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Gibbs simulation techniques have been used to calculate vapor-liquid equilibria of monatomic mole-
cules having both dipoles and linear quadrupoles embedded in their Lennard-Jones cores. Results
presented here include the coexistence curves and the estimates of the critical temperatures and densities
for a range of values of both Q*2 and u*?, where p*’=p’/(€0?)=1.00 or 2.00 and
0**=0?/(e0’)=1.00, 1.50, 2.00, or 2.50. Our simulation results indicate that both T* and p{ increase
with increasing values of the electrostatic moments, and both are more sensitive to Q *2 than pu*2.

PACS number(s): 64.70.Fx, 64.10.+h

I. INTRODUCTION

Vapor-liquid equilibria of fluids are of interest for
many reasons. For example, one would like to under-
stand the effect of different molecular parameters on the
saturation properties. A phase diagram summarizes the
behavior over a range of temperature and pressure, per-
mits interpolation between measured data, and facilitates
the determination of optimum conditions for specific ap-
plications. Since vapor-liquid equilibria are sensitive to
intermolecular potentials, the relationship may be studied
from both points of view. Furthermore, phase equilibria
for models can provide insight into the nature of this sen-
sitivity, and observed equilibria may be used cautiously to
investigate potentials.

The problem of obtaining phase diagrams from model
potential via computer simulation has been a challenge
ever since the first simulation studies [1] were reported.
A major advance in the use of molecular simulations in
the study of vapor-liquid equilibria has been the use of
the Gibbs-ensemble [2-4] method. This permits the
direct simulation of bulk vapor and liquid phases satisfy-
ing the conditions of phase equilibrium. Gibbs-ensemble
Monte Carlo simulations have now been performed for a
number of potential models, including pure Lennard-
Jones fluids and mixtures [5,6], Stockmayer fluids and
their mixtures, square-well fluids, and polyatomic fluids
and mixtures [7-10], the symmetrical nonadditive hard-
sphere system [11], the hard-core two-Yukawa fluid [12],
the Lennard-Jones fluids with a quadrupole interaction
[13,14], hard-core Yukawa fluids [15], the nonspherical
Gay-Berne fluid [16], square-well diatomics [17], more
realistic models for alkanes and water [18,19], and hard
ellipsoids [20].

The purpose of this paper is to apply the Gibbs-
ensemble method to a generalized Stockmayer fluid con-
sisting of Lennard-Jones (LJ) spheres with embedded
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point dipoles and linear quadrupoles. Our calculations
provide accurate vapor-liquid coexistence data for these
fluids. There are several reasons why model fluids of this
type are of interest. The combined effects due to dipoles
and quadrupoles have potential implications for the
theory of polar solutions. One advantage is that these
models are still sufficiently simple for theoretical methods
to be applied. Although dipoles are recognized as being
crucial for a realistic modeling of dielectric behavior,
molecular quadrupoles are expected to play a significant
role through their impact on the mutual orientation of
the molecules.

To the best of our knowledge, the calculated coex-
istence data presented here constitute the only available
simulation information on vapor-liquid equilibria of
monatomic molecules having both dipoles and linear
quadrupoles embedded in their Lennard-Jones cores. We
are also interested in studying the changes in the phase
diagram as a function of the molecular electrostatic mo-
ments. Since finite-size effects in the Gibbs ensemble are
reported to be smaller than in other ensembles [21], we
believe that our estimates of the critical properties of
fluids are reliable. Our simulation data now make it pos-
sible to assess the validity of other theories, e.g., those in
the form of the Padé approximants [22,23] based on per-
turbation theory, the linearized hypernetted chain
(LHNC), or generalized-mean-field (GMF) theory [24].

The rest of the paper is organized as follows. The
model potentials and computational details of our simula-
tions are presented in Sec. II. Section III contains the re-
sults of the Gibbs-ensemble simulations for the phase
equilibria as well as the critical behavior of our simula-
tion results. We also present a critical comparison be-
tween the behavior of our results and those of Stock-
mayer and quadrupolar LJ fluids. Section IV is devoted
to a summary and the conclusions of our results.

II. MODEL POTENTIALS
AND COMPUTATIONAL DETAILS

The intermolecular potential models we used in our
calculations have the general form
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U(T,0,,0,)=U(12)=U%12)+ U(12)
+UM(12)+ U¥Q(12) .

Here T is the vector joining the centers of mass of the
molecules, w;=(6;,¢;) is the orientation of molecule i,
and U° is the isotropic part of the potential which, in this
study is the Lennard-Jones 12-6 potential. U**, U*9, and
U are the contributions due to dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole interactions, re-
spectively:

UY(r)=4el(o/r)?—(a/r)], (1)
Ug“=(/.t*2/ri3-)[cosyij—3 cosb; cosb; ] , ()
UkC=(3u*Q* /2rf)
X [(cosB; —cosb;)
X (1+5cosB;cos0; —2cosy ;)] , (3)
UR=(3Q**/4r})
X[1—5co0s20;,—5 coszej —15 cos?6; coszej
+2(cosy;; —5 cosb; cosb; 2], 4)

where QF and uf, respectively, are the dipole and quad-
rupole moments on molecule i, r; j is the distance between
molecules i and j, and

A

cosf; =¢€,;T,;, cosh;=¢€;T,

i Vi T€i€; . (5)

’r‘,-j is a unit vector pointing from molecule i to molecule j,
and €; and €; are unit vectors along the molecular axes.
Our implementation of the Gibbs ensemble is essential-
ly the same as that described by Panagiotopoulos and co-
workers [2,5], and the reader is referred to these refer-
ences for a more detailed description of the technique.
Our calculations were performed mostly with N =500
particles. For the N =500 particles system we initialized
the simulation with 350 particles at a liquidlike density in
one box, and 150 particles at a lower, vaporlike density
for the other box. Generally the simulations were started
either with the particles of each box on the sites of a
face-centered-cubic (fcc) lattice, or in an equilibrated
state from a lower temperature. A simulation cycle in
the Gibbs-ensemble Monte Carlo method comprises three
distinct types of moves: individual molecule displace-
ments, interbox volume displacements, and interbox par-
ticle transfers. The relative numbers of each type of
move are chosen to optimize convergence. In these cal-
culations, for each cycle we used a single attempted dis-
placement of each molecule, followed by one trial volume
move, and a number of attempted particle transfers. In
the individual molecule displacements, the particles are
chosen and displaced randomly, both translationally and
orientationally, within the boxes, following the well es-
tablished Metropolis scheme for canonical NVT simula-
tions [25]. Particle transfers were achieved by creating a
particle at a random position in one subsystem and an-
nihilating a randomly chosen particle in the other subsys-
tem. The number of attempted particle transfers was ad-
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justed to achieve a success rate of between ~1-3 %. The
calculation required for the insertion step permitted the
evaluation of the chemical potential by Widom’s method
[26].

The Lennard-Jones potential was truncated at half the
box size, and the usual long tail corrections were applied
to energy and pressure. The simulation of phase equilib-
rium for a given state point involved a total of
Nyee =8000 cycles. After equilibrating the system for
2000 cycles; 10° attempted single-particle displacements,
a further 6000 cycles were performed to accumulate the
averages for the properties of the two coexisting phases.
By repeating the simulations for a series of temperatures,
the vapor-liquid coexistence curves were determined.

The algorithm used in this paper was tested in a num-
ber of special cases. When both the dipole and quadru-
pole moments are zero, the results for the pure LJ system
were reproduced [2,14]. Furthermore, when the quadru-
pole moment is zero, we obtain the results for the Stock-
mayer fluid [6]. Finally, when the dipole moment is zero
our results are the same as the quadrupolar LJ fluid of
Smit and Williams [14] and Stapleton et al. [13]. These
results for limiting cases give us added confidence that
the details of the algorithm are correct, and the calcula-
tions are long enough to ensure that our data are
representative of the thermodynamics conditions.

The long-range dipolar interactions were handled by
means of the minimum image convention, rather than by
the Ewald-Kornfeld summation technique [27]. For the
Stockmayer fluid, using N =500 particles without the
Ewald summation, our results match those of Smit et al.
[6] (see Table I) and unpublished work from this labora-
tory using the Ewald-Kornfeld summation for the
dipole-dipole interaction.

III. NUMERICAL RESULTS AND DISCUSSION

The phase equilibrium results from our Gibbs-
ensemble Monte Carlo simulations are presented in
Tables II-VIL. The results for various values of u*? and
Q*2 are tabulated in reduced units defined as T*=kT /e,
E*=E/Ne, p*=po’, and P*=Po’/e. The resulting
vapor-liquid coexistence curves are shown in Figs. 1-6.
The values of the critical constants are given in Table
VIII. All the averages shown in Tables II-VII were ob-
tained over periods of 6000 cycles.

The uncertainty reported with each result is the stan-
dard deviation of averages calculated over 100-cycle
blocks during the production phase of simulation. In
some cases simulations were repeated starting from
different initial conditions, including different overall
density, or with a different number attempted molecules
transfer per cycle. We found that the results obtained
were the same within their combined uncertainties.
These are consistent with equivalent results of other in-
vestigators (e.g., compare Tables I and II). Nevertheless
these uncertainties must be treated with some care since,
at best, they represent a “local” estimate of the variabili-
ty; the coexistence curves show roughness which is some-
what larger than the uncertainties but which is unlikely
to be physically correct.

Metropolis Monte Carlo simulations for a canonical
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TABLE I: Comparison of results using the minimum image (MI) convention in the Gibbs ensemble
for a Stockmayer fluid with those of Smit et al. using Ewald-Kornfeld (EK) [6] for various dipolar
strengths. N is the total number of particles, T* is the reduced temperature, p¥ is the reduced density,
P} (=P,0*/€) is the reduced pressure, E;* [ =E, /(Ne)] is the reduced energy, and u} [=p, /(Ne)]is

the reduced chemical potential in the x phase.

Vapor phase

Liquid phase

N T* Method p) P} E} ™ el P’ E} ut
©**=1.0

512 1.00 EK 00150 0.0140 —0.1800 —4.3700 0.7550 0.0100 —6.1600 —4.4400
+0.002 +0.002  +0.050 +£0.005 +0.030 +0.050

500 1.00 MI 00140 00134 —0.1790 —4.4545 0.7561 0.0220 —6.1519 —4.3416

512 1.10 EK 0.0270  0.0250 —0.3200 —4.3200 0.6970 0.0100 —5.6000 —4.2800
+0.007 +0.003  +0.070 +0.009 +0.020 +0.070

500 1.10 MI 0.0284 00274 —0.3350 —4.2608 0.7017 0.0392 —5.6369 —4.0872

216 130 EK 0.0800 0.0700 —0.8000 —4.0700 0.5700 0.0700 —4.500 —4.0800
40010 +0.010 0.1 +£0.020 +0.030 +0.1

500 1.30 MI 0.1031  0.0865 —1.0361 —3.9518 0.5783 0.0883 —4.5463 —3.9221

u*?=2.0

512 1.15 EK 00120 00120 —0.2300 —5.2900 0.7590 0.0000 —7.5600 —5.1100
+0.002 +0.002  +0.090 +£0.007 +0.05  +0.060

500 1.15 MI 00118 00132 —02576 —5.3269 0.7601 0.0010 —7.6037 —5.3177

216 130 EK 0.0400 0.0340 —0.6100 —4.8700 0.6900 0.0200 —6.7000 —S5.1400
+0.010 +0.004  +0.100 +0.010 +0.040  +0.200

500 1.30 MI 00341 00374 —0.6392 —4.9374 0.6886 0360 —6.7821 —5.0061

216 140 EK 0.0600 0.0580 —0.9000 —4.8500 0.6300 0.0300 —6.2000 —4.8700
+0.010 +0.008 +0.30 +0.020 +0.060 +0.2

500 1.40 MI 00575 0.0589 —0.9597 —4.8067 0.6342 0.0516 —6.1828 —4.8207

TABLE II. Summary of the results of the Monte Carlo simulation in the Gibbs ensemble for a dipolar plus quadrupolar Lennard-
Jones fluid for various dipolar and quadrupolar strengths. N is the total number of particles, T* is the reduced temperature, Ny is
the number of Monte Carlo cycles, p} is the reduced density, P,¥ (=P, 0°/¢) is the reduced pressure, E;f [=E, /(Ne)] is the reduced
energy, uf [=u, /(Ne)] is the reduced chemical potential in the x phase, and p* is overall simulation density of each temperature
run.

0*=1.00 Vapor phase Liquid phase
N T* Ny p° Py P} E} By p! il E} pt
u*?=1.00

500 14 8000 0.063 0.022 0.027 —0.479 —5.722 0.783 0.035 —8.880 —5.618
+0.002 +0.001 +0.010 +0.20 +0.004 +0.001 +0.038 +0.35

500 1.45 8000 0.063 0.031 0.038 —0.639 —5.547 0.760 0.048 —8.535 —5.278
+0.003 +0.002 +0.005 +0.10 +0.004 +0.002 +0.056 1+0.40

500 1.50 8000 0.063 0.039 0.046 —0.748 —5.500 0.732 0.062 —8.169 —5.308
+0.003 +0.004 +0.004 +0.10 +0.003 +0.007 +0.0172 +0.30

500 1.55 8000 0.063 0.048 0.057 —0.861 —5.423 0.698 0.068 —7.769 —5.569
+0.004 +0.006 +0.001 +0.10 +0.006 +0.002 +0.029 10.10

500 1.60 8000 0.140 0.073 0.083 —1.260 —5.207 0.679 0.097 —7.463 —5.221
+0.003 +0.006 +0.05 +0.10 +0.006 +0.008 +0.06 +0.10

500 1.65 8000 0.140 0.094 0.100 —1.522 —5.133 0.631 0.104 —6.919 —5.161
+0.003 +0.004 +0.048 +0.10 +0.002 +0.007 +0.04 +0.10

500 1.70 8000 0.140 0.099 0.110 —1.540 —5.168 0.587 0.116 —6.457 —5.030
10.004 1+0.004 +0.050 +0.10 +0.011 +0.001 +0.09 +0.20

500 1.75 8000 0.265 0.149 0.141 —2.151 —5.010 0.533 0.163 —5.893 —4.932
+0.005 +0.002 +0.050 +0.10 +0.018 +0.013 +0.009 +0.20
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TABLE III. Vapor-liquid coexistence data from the Gibbs-ensemble Monte Carlo simulation for
#**=1.00 and Q*?=1.50. See Table II for details.

0*=1.50 Vapor phase Liquid phase
N T* Ncyc]e P* P: Pv)'r Eut ,U.: PI‘ Pl* EI‘ I‘f
w**=1.00

500 1.70 8000 0.063 0.025 0.037 —0.72 —6.79 0.80 0.041 —10.94 —6.533
+0.004 +0.001 =+0.018 =+0.10 £0.006 =+0.006 +0.083 £0.30

500 1.80 8000 0.063 0.037 0.054 —0.961 —6.613 0.718 0.064 —9.730 —6.688
+0.003 +0.003 +0.023 £0.10 £0.010 =£0.004 +0.172 +0.10

500 190 8000 0.122 0.069 0.094 —1.567 —6.208 0.660 0.087 —8.802 —6.040
+0.001 £0.005 +0.049 +0.10 +0.007 +0.008 +0.120 +£0.20

500 2.00 8000 0.187 0.108 0.135 —2.125 —6.040 0.599 0.137 —7.962 —5.895
+0.002 +0.004 £0.035 =£0.15 £0.017 =+0.001 +0.192 +£0.36

500 2.05 8000 0.254 0.164 0.171 —2.988 —5.861 0.545 0.179 —7.314 —5.880
+0.012 +£0.003 =£0.16 +0.09 £0.012 =£0.002 +0.15 +0.07

TABLE IV. Vapor-liquid coexistence data from the Gibbs-ensemble Monte Carlo simulation for

p**=1.00 and Q*?=2.00. See Table II for details.

0*?=2.00 Vapor phase Liquid phase
N T* Ncycle P* P: Pu‘ Ev‘ .u‘: P;' PI* EI* ,Uf
p**=1.00

500 2.00 8000 0.122 0.032 0.049 —1419 —7.708 0.824 0.047 —13.285 —7.924
+0.002 +0.006 +0.012 +0.20 +0.006 =0.002 +0.059 =£0.10

500 2.10 8000 0.122 0.037 0.063 —1.266 —7.777 0.753 0.050 —12.099 —7.738
+0.002 +0.004 +0.026 +0.10 =£0.017 =0.008 +0.212 +0.10

500 2.20 8000 O0.119 0.067 0.102 —1.993 —7.288 0.713 0.119 —11.315 —7.374
+0.002 +0.009 +0.034 =£0.13 +0.001 £0.002 +0.230 =+0.15

500 2.30 8000 0.183 0.096 0.141 —2.535 —7.145 0.607 0.154 —09.772 —17.366
+0.003 +0.002 +0.046 =+0.38 +0.011 =0.008 +0.171  £0.10

500 2.35 8000 0.233 0.124 0.173 —3.066 —6.980 0.578 0.189 —9.380 —6.763
+0.011 +0.009 =+0.25 +0.10 +0.015 =0.003 +0.123  +0.40

TABLE V. Vapor-liquid coexistence data from the

1*?=1.00 and Q*?=2.50. See Table II for details.

Gibbs-ensemble

Monte Carlo simulation for

0*?=2.50 Vapor phase Liquid phase
N T* Ncycle P‘ P: Pv* Eu* #‘u* p;' PI* El’ ,u';k
n*?=1.00

500 2.40 8000 0.172 0.046 0.081 —2.215 —8.701 0.823 0.058 —15.413 —8.281
+0.001 +0.002 +0.009 =+0.10 +0.007 +0.009 +0.032 +0.60

500 2.50 8000 0.169 0.066 0.111 —2.604 —8467 0.791 0.140 —14.659 —8.265
+0.005 +0.007 +£0.013 =£0.10 +0.014 =+0.005 +0.110 +0.30

500 2.60 8000 0.169 0.080 0.139 —2.855 —8.459 0.697 0.153 —13.079 —8.720
+0.001 +0.008 £0.018 +0.20 +0.007 =+0.001 +0.104 +0.09

500 2.70 8000 0.250 0.119 0.191 —3.807 —8.154 0.616 0.201 —11.738 —8.305
+0.001 +0.006 +0.021 +0.20 £0.011 =0.002 +0.145 +0.10

500 2.75 8000 0.261 0.153 0.222 —4.337 —8.040 0.563 0.229 —10.825 —8.068
+0.012 +0.003 +0.031 =+0.10 =+0.014 =£0.002 +0.167 +0.10
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TABLE VI. Vapor-liquid coexistence data from the Gibbs-ensemble Monte Carlo simulation for
1*?=2.00 and Q*2=1.00. See Table II for details.

0*=1.00 Vapor phase Liquid phase
N T* Ncycle P* pu‘ P: E‘vl.K F‘v‘ Pl‘ PI'r EI‘ #7
©*?=2.00

500 1.60 8000 0.270 0.026 0.035 —0.828 —6.434 0.781 0.033 —10.190 —6.769
+0.001 +0.002 +0.040 +0.30 £0.002 +0.003 +0.014 +0.09

500 1.65 8000 0.270 0.031 0.043 —0.879 —6.391 0.746 0.035 —9.681 —6.735
+0.004 +0.003 +0.063 +040 £0.006 =+0.008 +0.062 +0.08

500 1.70 8000 0.270 0.041 0.054 —1.090 —6.255 0.717 0.053 —9.298 —6.193
+0.002 +0.004 +0.069 +0.10 +0.006 =+0.007 +0.043 +0.10

500 1.75 8000 0.269 0.043 0.057 —1.101 —6.374 0.682 0.050 —8.843 —6.403
+0.001 +0.003 +0.079 +0.15 +0.008 +0.004 +0.051 =0.10

500 1.80 8000 0.269 0.061 0.081 —1458 —6.177 0.651 0.099 —8.417 —5.976
+0.004 +0.003 +£0.02 +0.13  £0.005 =0.001 +0.058 +0.26

500 1.85 8000 0.269 0.084 0.099 —1.859 —5.995 0.636 0.112 —8.135 —6.183
+0.002 +0.009 +0.057 +0.2 +0.004 +£0.003 +0.032 +0.05

500 1.90 8000 0.269 0.121 0.126 —2.487 —5.849 0.591 0.138 —7.608 —5.881
+0.002 +0.004 +0.050 +0.10 =£0.011 +0.001 +0.091 +0.10

500 1.95 8000 0.269 0.134 0.142 —2.605 —5.861 0.516 0.132 —6.825 —5.720
+0.005 £0.002 £0.050 +£0.06 +0.018 +0.001 +0.01 +0.12

ensemble are believed to overestimate the critical temper-
ature [8]. To obtain precise estimates of the critical prop-
erties of the fluids, we have used these vapor-liquid equi-
librium data to estimate the critical temperatures and
densities. For this purpose, we have fitted our results to
the law of rectilinear diameters [28] and a power law near
the critical point:

(p}+p2) /2= A(T*—T*)+B , (6)
B
= T*
pl—pr=C|1— e | (7

where p; and p} are the saturation vapor and liquid den-
sities at temperature T*. In the above relations 4, B,
and C are constants to be determined from the data, and

B is a known constant, the critical exponent (3=0.32
[28]). Equation (7) can be linearized by taking the Bth
root, and by fitting the simulation coexistence densities at
different temperatures for every value of £*? and Q*? in-
cluded in Tables II and VII, T* can be determined. Us-
ing the value T} for every value of u*? and Q*?, again
fitting the simulation coexistence densities in Eq. (6), we
obtain the value of p¥. The values of critical constants
are presented in the Table VIII.

Because we are using 500 particles, increasing the sys-
tem size should have a negligible effect on the Gibbs
simulations reported here, and the critical parameters
given in Table VIII should be close to those of the corre-
sponding infinite system. There are no theoretical results
available in the literature for comparison with ours.

Overall, the results suggest that the critical tempera-

TABLE VII. Vapor-liquid coexistence data from the Gibbs-ensemble Monte Carlo simulation for

p#*?=2.00 and Q*?=2.00. See Table II for details.

0**=2.00 Vapor phase Liquid phase
N T* Ncycle P* P: Pv* E‘ul.K ,LL,T Pf PI* EI‘ IJ'I‘
u*?2=2.00

500 2.20 8000 0.122 0.029 0.051 —1477 —8.863 0.813 0.048 —14.657 —8.306
+0.009 +0.001 +0.040 +0.10 +0.003 +0.004 +0.029 +0.60

500 2.30 8000 0.122 0.046 0.077 —2.134 —8.454 0.764 0.075 —13.679 —8.798
+0.001 +0.002 +0.063 +040 +0.006 +0.002 +0.081 +0.60

500 2.40 8000 0.122 0.067 0.106 —2.739 —8.183 0.713 0.109 —12.811 —8.029
+0.001 +0.003 +0.069 +0.10 +0.004 =+0.009 +0.043 +0.24

500 2.50 8000 0.183 0.090 0.140 —3.125 —8.155 0.657 0.146 —11.824 —8.505
+0.003 +0.002 £0.079 045 +0.007 =0.004 +0.082 +0.10

500 2.55 8000 0.228 0.114 0.161 —3.808 —7.850 0.564 0.141 —10.645 —7.920
+0.003 +0.003 +0.02 +0.20 +0.005 +0.008 +0.07 +0.10

500 2.60 8000 0.228 0.151 0.200 —4.431 —7.806 0.550 0.230 —10.246 —7.391
+0.004 +0.009 +£0.057 +0.10 +0.003 +0.003 1+0.04 +0.56




2180

TABLE VIII. Estimates of the critical temperature T.* and
critical density p} for various dipolar strengths x*2 and quadru-
polar strengths Q *2.

u 0" T ot
1.00 1.00 1.79 0.33
+0.02 +0.01
1.00 1.50 2.09 0.34
+0.02 +0.01
1.00 2.00 2.42 0.33
+0.02 +0.01
1.00 2.50 2.80 0.35
+0.03 +0.01
2.00 1.00 2.00 0.32
+0.02 +0.01
2.00 2.00 2.65 0.33
+0.03 +0.01

ture is sensitive to variation in Q ** while u*? is fixed (see
Fig. 7). The critical temperature increases with Q*? at
fixed u*?, and it also increases with u*? at fixed Q*2, but
less strongly. The critical volume, on the other hand, is
insensitive to u*? at fixed Q*2, but may increase slightly
with Q*? at fixed u*2. The volume effect is probably near
the limit of our ability to measure it reliably, and may be
an artifact. However, an argument in favor of such a re-
sult is easy to find: dipolar interactions supply relatively

1.9 K
1.8+ 4

1.7 = x °

T 16 = x °
1.5F¢ *

|
l4te x g 4!
|

1'%.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Vapor-liquid coexistence curve for p*?>=1.00 and
0*2=1.00, where { represent the densities of coexisting vapor
py and liquid p;* phases, X represent the rectilinear diameter
values, and @ represents the estimated critical point T.* ob-
tained from Gibbs-ensemble Monte Carlo simulations.
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2.2 T T T "

2.1t ]

T* 1.9F o x £ 4

1.8+e x JOF ]

1.7+ x S 4

1'%40 0.2 0.4 0.6 0.8 1.0

p

FIG. 2. Vapor-liquid coexistence curve for u*?=1.00 and
Q*?=1.50. See the caption of Fig. 1 for details.

little binding energy to dense fluids because of the well-
known difficulty of packing dipoles in three dimensions;
whereas quadrupole interactions, although intrinsically
weaker, contribute relatively more to the packing ener-
gies by virtue of their geometrical properties. Critical
constants are available in the literature for Stockmayer
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FIG. 3. Vapor-liquid coexistence curve for p**=1.00 and
Q*2=2.00. See the caption of Fig. 1 for details.
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FIG. 4. Vapor-liquid coexistence curve for p*?=1.00 and
Q*?=2.50. See the caption of Fig. 1 for details.

[6] and quadrupolar LJ fluids [14]. For the Stockmayer
case, as p‘Z changes from 1.00 to 2.00, the critical tem-
peratures move from 1.41 to 1.60, whereas the critical
density hardly changes at all, moving only from 0.30 to
0.31. But for the quadrupolar LJ fluid, as Q*? changes
from 1.00 to 2.50, in steps of 0.50, the respective critical
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_FIG. 5. Vapor-liquid coexistence curve for 1*?=2.00 and
Q*?=1.00. See the caption of Fig. 1 for details.
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FIG. 6. Vapor-liquid coexistence curve for u*?=2.00 and
Q*?=2.00. See the caption of Fig. 1 for details.

temperatures are 1.60, 1.89, 2.25, and 2.62, and the corre-
sponding critical densities are 0.34, 0.36, 0.38, and 0.41.
Our results for nonzero values of both moments seem
qualitatively consistent with this pattern.

As a part of this investigation, we examined the
behavior of the systems under the law of corresponding
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FIG. 7. Reduced critical temperature, T.* vs Q*? for fixed
u**=1.00.
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FIG. 8. The reduced vapor-liquid coexistence curves for,
#*2=0.00 and Q*2=1.00, 1.50, 2.00, and 2.50, where O, +, O,
and X represent for Q *2=1.00, 1.50, 2.00, and 2.50, respective-
ly, and 1£*?=0.00 in all cases. The temperature and density for
each system has been reduced by the respective critical tempera-
ture and density of Smit and Williams [14].

states. For this purpose we wanted to make a compar-
ison between the reduced vapor-liquid coexistence curves
for the quadrupolar Lennard-Jones fluid for pu*2=0.00,
Q*? not equal to 0.00 of Smit and Williams [14] and with
our simulation results. As Fig. 8 shows, the law of corre-
sponding states is largely obeyed by the quadrupolar
Lennard-Jones fluid. Our results for u*2=1.00 and vari-
ous values of Q*? (Fig. 9) show less satisfactory agree-
ment, especially on the high density arm of the reduced
coexistence curve. The scatter in the data is large, but
the results suggest there is a definite effect.

For all combinations of u** and 0*?, the simulation re-
sults for the logarithm of the vapor pressure versus in-
verse temperature are approximately linear, as predicted
by the Clausius-Clapeyron equation and by formal
theories such as perturbation theory.

Patey and Valleau [24] reported the success of the Padé
version of the thermodynamic perturbation theory for
fluids of hard spheres with embedded point dipoles and
quadrupoles. It would be very interesting to compare the
results of these simulations with the predictions of ther-
modynamic perturbation theory.
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FIG. 9. The reduced vapor-liquid coexistence curves for,
p*2=1.00 and Q*?=1.00, 1.50, 2.00, and 2.50, where Q, +, [,
and X represent for Q**=1.00, 1.50, 2.00, and 2.50, respective-
ly, and u**=1.00 in all cases. The temperature and density for
each system has been reduced by the respective critical tempera-
ture and density.

IV. CONCLUDING REMARKS

We have presented data for vapor-liquid coexistence
curves of generalized Stockmayer fluids based on Gibbs-
ensemble simulations. Both T and p} increase with in-
creasing values of the electrostatic moments, and both
are more sensitive to Q** than to u*2. We have present-
ed results for a range of values of u*? and Q*2. The
behavior of T is strongly systematic with the value of
the moments, but p} is much less variable, to the point
where the uncertainties are comparable with or larger
than the systematic variation. Perturbation theories are
known to be inaccurate for the critical parameters of the
Stockmayer fluid and are likely to be even more unreli-
able here. However, the data presented here should
prove useful when studying the systematics of liquid-
vapor equilibrium in these simple model systems.
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